domingo, 31 de marzo de 2013

Recuperación Mejorada de Petróleo


Típicamente sólo 30 por ciento del petróleo de un pozo petrolero puede extraerse con los métodos tradicionales, por tanto, quedan enormes cantidades de petróleo por recuperar de los puntos de extracción actuales o incluso de los ya abandonados; esto se debe a que la mayor cantidad del petróleo se encuentra en el medio poroso o matriz, es decir, en la roca: llámese areniscas, calizas o carbonatos, por citar algunos ejemplos.
Existen tecnologías, procesos o mecanismos conocidos como: Recuperación Terciaria o Mejorada de Petróleo (EOR por sus siglas en inglés “Enhanced Oil Recovery”), cuya aplicación puede ayudar a recuperar entre 10 y 20 por ciento del petróleo original en sitio, lo cual podría parecer poco, pero resulta increíble para la industria petrolera de acuerdo con las tasas de recuperación y producción actuales.

La recuperación mejorada de petróleo se define como el conjunto de métodos que emplean fuentes externas de energía y/o materiales para recuperar el aceite que no puede ser producido por medios convencionales (recuperación primaria y secundaria).

viernes, 29 de marzo de 2013

Clasificación de los Métodos de Recuperación Mejorada de Petróleo



Existen diferentes métodos de recuperación mejorada, que permiten mejorar los recobros por inyección de agua. Algunos aplican calor y otros no, donde los grandes grupos son térmicos y no térmicos. Los térmicos son utilizados con preferencia para los crudos pesados, mientras los no térmicos son utilizados para crudos livianos, aunque algunos pueden ser aplicables a crudos pesados, pero han tenido poco éxito en las aplicaciones de campo.


Se han propuesto también métodos de recuperación los cuales son combinaciones de otros, como por ejemplo la inyección alcalina con surfactantes y polímeros. De igual manera se han sugerido y probado muchas combinaciones de vapor con químicos y solventes.

Métodos No Convencionales No Térmicos


Los métodos no térmicos abarcan los procesos químicos y los miscibles.

1. Invasiones químicas
La mayoría de los procesos químicos involucran la inyección de materiales que usualmente no se encuentran en los yacimientos.

    1.1. Invasión con polímeros.
La invasión con polímeros es una modificación de la inyección de agua y consiste en añadir el agua de inyección un tapón de polímeros de alto peso molecular antes de que esta sea inyectada en el yacimiento, ésta propiedad hace que mejore la razón de movilidad agua-petróleo, lo cual da como resultado un mejor desplazamiento y un barrido mas completo que en la invasión con agua convencional. Con polímeros, se forma un banco de petróleo que de empuja como en la inyección de agua convencional.



    1.2. Invasión con surfactantes.
El principal objetivo de este proceso es recuperar el petróleo residual, 20 a 40% del volumen poroso, que permanece después de la recuperación primaria o de una inyección de agua. Como beneficio secundario puede también mejorar la eficiencia de barrido volumétrico. En algunas de las primeras investigaciones en las invasiones con surfactantes, se trata de que ocurra como un desplazamiento miscible, sin las desventajas características de la movilidad desfavorable y la segregación por la gravedad.

Habitualmente, para asegurarse de que la movilidad esté bien controlada, el tapón de surfactante se empuja con un determinado volumen de solución de polímeros. Además, se utilizan varios aditivos con el surfactante para protegerlo contra las sales minerales del agua de formación por la precipitación o secuestro de los cationes divalentes. Los aditivos más populares son amonio, carbonato de sodio y trifosfato de sodio.


    1.3. Invasiones alcalinas o procesos de inversión de humectabilidad
La inyección de soluciones alcalinas emplean un proceso de emulsificación en el sitio, este método de EOR requiere adicionar al agua de inyección de ciertas sustancias químicas como hidróxido de sodio, silicato de sodio, soda cáustica o carbonato de sodio, las cuales reaccionan con los ácidos orgánicos que contiene el petróleo del yacimiento.



    1.4. Invasiones micelares.
La invasión micelar o microemulsión es un proceso muy complejo, pero es un método terciario de recuperación de petróleo muy promisorio para petróleos livianos. Ha sido extensamente probado en el laboratorio y existen varias pruebas de campo con resultados exitosos.

La técnica consiste en la inyección de un tapón micelar seguido por un volumen de solución de polímero, el cual se empuja con agua; a menudo se inyecta un preflujo delante del tapón micelar para condicionar la roca. La solución micelar que se utiliza es el elemento clave del proceso y esta formada por agua, un hidrocarburo, 10-15% de surfactante, junto con pequeñas cantidades de sal y un alcohol adecuado, el cual este último se utiliza para controlar la viscosidad y el comportamiento de fase.

    1.5. Inyección de espuma.
Las espumas son acumulaciones de burbuja de gas separadas unas de otras por películas gruesas de líquidos, con la propiedad de tener una viscosidad mayor que la del gas o líquido que la componen. La inyección de espuma consiste en inyectar aire, agua y un agente químico que la estabiliza, y se realiza a una razón de movilidad menor que la inyección de gas o líquido solos. La calidad de la espuma se define como la razón entre el volumen de gas contenido y el volumen total de la espuma. Es altamente eficiente ya que las espumas se ubican primero en los poros mas grandes, donde tienden a obstruir el flujo, los poros pequeños son invadidos luego, mientras que las secciones mas permeables se van llenando de espuma y la eficiencia del barrido vertical se mejora.

2. Desplazamientos miscibles.
Este proceso consiste en inyectar un agente desplazante completamente miscible con el petróleo existente. En condiciones ideales, el fluido desplazante y el petróleo se mezclan en una banda estrecha que se expande a medida que se mueve en el medio poroso, y desplaza todo el petróleo que se encuentra delante como un pistón.

El desplazamiento miscible puede ser del tipo de primer contacto, como el de un hidrocarburo por otro y cuando los dos son miscibles en todas las proporciones, es decir, la miscibilidad entre los dos se alcanza por varios contactos y el correspondiente equilibrio de fases.

    2.1. Proceso de tapones miscibles
Consiste en la inyección de algún solvente líquido miscible al petróleo del yacimiento al entrar en contacto con este. La figura 1 muestra un esquema del desplazamiento de petróleo por un tapón de propano u otro LPG, seguido de agua. Para mejorar la movilidad de los fluidos se inyecta al agua y el gas de manera alternada. Asimismo, debe alcanzarse una presión considerable que permita la miscibilidad tanto entre el tapón y el petróleo, como entre el tapón y el gas desplazante.


    2.2. Proceso con gas enriquecido o empuje con gas condensante
En este caso el tapón inyectado es de metano enriquecido con etano, propano o butano y este es seguido de gas pobre y agua. En la formación se encuentra una zona rica en C2 y C4 miscible al petróleo, debido a que este absorbe los componentes enriquecidos del gas. Para lograr la operación debe lograrse una presión en el rango de 1.450 a 2.800 lpc.

    2.3. Empuje con gas vaporizante o de alta presión
Consiste en la inyección continua de gas pobre como el metano o el etano a una presión por encima de 2.900 lpc para formar una zona de miscibilidad. Esta zona se alcanza en un punto más alejado del punto de inyección, a unos 100 pies antes de que el gas haya vaporizado suficiente C2 al C6 para ser miscible.

    2.4. Inyección alternada de agua y gas
Este proceso, conocido como proceso WAG, consiste en inyectar tapones de agua y gas de manera alternada hasta que dichos fluidos lleguen al pozo productor, de tal forma que el tapón de agua no llegue a conseguir fluido miscible en el banco.

    2.5 Inyección usando solventes
Se les llama solventes a la mayoría de los fluidos que son miscibles con el petróleo de manera parcial. El proceso de inyección de solventes es uno de los primeros métodos que se empleo para extraer petróleo. Este consiste en inyectar gas licuado del petróleo (LPG) en pequeños tapones y desplazarlo por medio de otro tapón de gas seco. Este mecanismo cumple funciones importantes como son la extracción del crudo, disolución, disminución de la viscosidad, incremento del petróleo y el empuje por gas en solución, siendo el principal la extracción. Entre los fluidos más utilizados en la operación se encuentran: alcoholes orgánicos, cetonas, hidrocarburos refinados, gas condensado del petróleo (LPG), gas natural y gas licuado (LNG), dióxido de carbono, aire, nitrógeno, gases de combustión y otros.

3. Empujes con gas
La inyección de gas disminuye la tensión interfacial y mejora la movilidad del petróleo. Gracias a ello el desplazamiento de miscibles e inmiscibles pueden lograr altas eficiencias en la recuperación el crudo que queda en las zonas barridas y no barridas. El objetivo de utilizar dióxido de carbono u otro gas junto con el agua, es reducir la viscosidad del petróleo y aumentar la presión del yacimiento. A continuación se explican algunas de estas técnicas:

    3.1. Inyección cíclica de gas
En este proceso se introduce un tapón de gas, generalmente C02, en el pozo, luego cerrarlo por un tiempo de remojo para lograr el equilibrio de las fases, y posteriormente reabrirlo.



    3.2. Inyección de agua carbonatada
Como se representa en la figura 2, este proceso consiste en introducir dióxido de carbono al agua que se inyecta, con la finalidad de reducir la viscosidad y facilitar la movilidad. Para remover el agua carbonatada se inyecta agua al final.

jueves, 28 de marzo de 2013

Métodos No Convencionales Térmicos


Estos procesos son especialmente útiles para los crudos pesados (5-15 ° API), ya que la función principal de estos es disminuir la viscosidad del petróleo y optimizar su movilidad. Cabe mencionar, que estos métodos de recuperación han alcanzado el mayor éxito en los últimos años y por ello gran porcentaje de la producción diaria de Recuperación Mejorada en Canadá, Estados Unidos y Venezuela proviene principalmente de ellos.

A continuación se describen brevemente los distintos métodos de recuperación térmica:



1. Inyección de agua caliente

Este método, sencillo y convincente, consiste en desplazar el petróleo inmisciblemente al inyectar agua caliente y agua fría. La zona próxima al pozo inyector se calienta y al mismo tiempo parte de ese calor se pierde hacia las formaciones adyacentes. El agua introducida pierde calor rápidamente y alcanza la temperatura del yacimiento, por lo que en el borde de este frente se desplaza es el petróleo no calentado. Este proceso permite disminuir la viscosidad del crudo y mejorar su movilidad, reducir el petróleo residual y expandir el fluido por temperatura.


2. Inyección continua de vapor
Del mismo modo que la inyección de agua, este mecanismo de empuje es un arreglo entre pozos de inyección y producción. En este caso, las pérdidas de calor son mayores, por lo que el tamaño del arreglo es un punto importante a considerar. Sin embargo, al recobro de petróleo puede pasar del 50%. El proceso consiste en inyectar continuamente el vapor, formándose una zona de vapor que avanza a una tasa siempre decreciente. Para disminuir las pérdidas de calor, se debe reducir el volumen de inyección hasta un valor conveniente, más tarde se interrumpe por completo y se introduce agua caliente o fría mientras que los productores se mantienen abiertos.

¿Por qué utilizar la Inyección Continua de Vapor?

Aumenta las reservas en un factor de 2 - 10 veces– comparado con la recuperación primaria de Primaria de crudo pesado.

Se obtienen ambas producciones, incremental y acelerada.

Ingresos anuales adicionales en línea con los aumentos de producción.
El rango de la eficiencia térmica está entre el 75-85%


3. Inyección alternada de vapor

Este mecanismo posee diferentes etapas. Primero se inyecta un volumen de vapor preestablecido por una a tres semanas. Luego se cierra el pozo por unos días en fase de remojo de manera que el vapor se disperse uniformemente y caliente la formación. Finalmente se abre de nuevo de pozo en fase de producción hasta que este deje de ser económicamente rentable. A este proceso también se le denomina Inyección cíclica de Vapor o Remojo con Vapor, y fue descubierto en Venezuela accidentalmente en 1957 en una prueba de inyección continua de vapor en el Campo Mene Grande.



El método se aplica en yacimientos de crudos pesados para aumentar el recobro durante el período de producción primaria. Y generalmente, luego del proceso se inicia una inyección continua de vapor. La recuperación de petróleo es baja frecuentemente porque sólo se ve afectada una parte de del yacimiento.





4. Drenaje por gravedad asistido con vapor o sus siglas en ingles SAGD

Se inyecta vapor continuamente cerca del fondo del yacimiento, este vapor cuando se condensa tiende a subir mientras que el petróleo calentado baja hasta el fondo, esto permite que el petróleo drene por gravedad hasta el pozo productor. 


 

El pozo superior es el inyector y el pozo más profundo, el productor. El objetivo es introducir el vapor continuamente y remover el vapor condensado que se va formando junto con el petróleo que se va calentando. El vapor se introduce cerca del fondo del yacimiento y tiende a elevarse, mientras que el petróleo calentado tiende a caer hacia el fondo. La cámara de vapor que se va formando encima del productor, se mantiene a una presión constante durante todo el proceso y está rodeada por la arena petrolífera fría a través de la cual fluye el vapor hacia la interfase y se condensa; esto permite que el petróleo drene por gravedad hasta el pozo productor.
En este método existen diferentes esquemas de arreglos de los pozos. A continuación se presentan algunos de ellos:



5. Thai, Toe-to-Heel Air Injection
Thai, que por sus siglas es Toe-to-Heel Air Injection, genera calor in situ en vez de inyectarlo desde superficie y dicho a grosso modo, Thai adopta una configuración especial de pozo vertical y horizontal con combustión en sitio.

THAI, puede ser utilizado en muchas zonas donde los métodos de vapor no puede:


• Depósitos más delgados y menos de 10 metros de espesor

• En caso de agua superior o inferior está presente

• Si el gas superior está ausente

• Áreas con "lentes de esquisto" que actúan como barreras al vapor
 b























6. Capri
Capri es Thai más un catalizador que se agrega al relleno de grava alrededor del pozo de producción; en otras palabras Capri hace el trabajo de una refinería pero en el subsuelo. Ahora bien, combinando ambos sistemas lo que se quiere es iniciar fuego subterráneo y hacer fluir el petróleo pesado, a la vez que se mejora la condición del crudo, en términos de densidad, antes de llegar a superficie


7. Combustión in situ
Consiste en quemar una cierta cantidad de petróleo en el yacimiento (aproximadamente 10%) para generar calor. “El proceso se inicia bajando un calentador o quemador que se coloca en el pozo inyector. Luego se inyecta aire hacia fondo del pozo, se pone a funcionar el calentador hasta lograr el encendido. Después se calienta los alrededores del fondo del pozo, se saca el calentador, pero se continua con la inyección de aire para mantener el avance del frente de combustión”[7], lo que permite que el fluido sea menos viscoso y se pueda optimizar la producción de petróleo. Según Carol Marzuola[8], (VenEconomía Vol.20 No. 10, Julio 2003) este método posee ciertas desventajas ya que se necesita suficiente cantidad de energía para generar vapor mediante la combustión del gas, otra de ellas es que el vapor pasa por encima del yacimiento del crudo, trayendo como consecuencia que solo se recupere en un 30% del crudo del yacimiento. Existen tres tipos de procesos de combustión:


    7.1. Combustión Convencional o “hacia adelante”

La zona de combustión avanza en la misma dirección del flujo de fluidos. El aire se inyecta para oxidar el petróleo, produciendo grandes volúmenes de gas. Delante de la zona de combustión, ocurre el craqueo del petróleo, originando el depósito de las fracciones mas pesadas, en esa misma zona existe una segregación por gravedad lo que genera que la temperatura del pozo aumente y que la tasa de producción sea más elevada.


   5.2. Combustión en reverso
Según Berry y Parrish [10] , la zona de combustión se mueve en dirección opuesta a la corriente del aire, a donde exista mas concentración de oxigeno. Los fluidos producidos deben fluir a través de las zonas de altas temperaturas hacia los productores, haciendo que ocurra la reducción de la viscosidad del petróleo por un factor de 10.000 o más. Esto lo hace fluir fácilmente hacia los productores. Es utilizado en petróleos viscosos.

     7.3. Combustión húmeda

Se inyecta agua alternada con aire. Al reducirse la viscosidad del petróleo frió se extiende la zona del vapor o zona caliente, esto hace que el petróleo se mueva mas fácilmente dependiendo de la cantidad del crudo quemado y la tasa de inyección del aire.